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On geminals and symplectic bases in quantum chemistry
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The construction of a symplectic basis set with N electrons is exhibited by means of three
kinds of units, the first kind geminal, the second kind geminal and the one-particle operators.
The optimization procedure of the variation method is extended to the coefficients in the
linear sum of the symplectic bases, the parameters in the geminals, and the orbitals. For
practical use, these bases are expanded explicitly as a linear sum of the Slater determinants.
For illustration, the LiH molecule, which is taken as an example, is calculated by using
some symplectic bases.

1. Introduction

The projected BCS or pairing function – or, as we prefer, the antisymmetrized
geminal power function (AGP) – has appeared in several places in physics and chem-
istry. It is now widely admitted [1] that the chief cornerstone of the BCS theory of
superconductivity is the assumption that the wave function is AGP. It is also the ground
state of the B-condition for N -representability [2–4]. Recently, it was recognized that
the AGP function is an appropriate ground state for permitting the Random Phase
Approximation to be self-consistent. This appreciation led to renewed successful ap-
plications of AGP and GAGP to the chemistry of molecules [5,8,10–13,16–19,21–25].
A suggestion of Mottelson in 1959 has led to a pairing “industry” in nuclear physics
exploiting the AGP function. Reference [5] gives an entry into this large literature.

The object of the present paper is to exhibit the construction of
(2M
N

)
N -electron

bases with symplectic symmetry by means of three kinds of units, the first kind gemi-
nal, the second kind geminal, and the one-particle operators. These bases contain AGP
which acts as an important one in the computation of ground state for even N . The
idea of invoking the symplectic group to obtain “good” quantum numbers to specify
a wave function goes back at least to Flower in 1952 [7,9]. In this paper, a modified
branching rules of symplectic group in equations (40) and (41) which play a crucial
role are introduced instead of the symplectic diagram technique in the previous paper
[28]. The types of the symplectic bases for even N are classified as AGP (Antisym-
metrized Geminal Power), SPG (Sequential Product of Geminals), AGP-SPG, GAGP
(Generalized AGP), GSPG (Generalized SPG), G(AGP-SPG) (Generalized AGP-SPG)
and SD (Slater Determinant), whereas for odd N , no types like AGP, SPG and AGP-
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SPG appear in the bases. Furthermore, the symplectic bases are expanded explicitly as
the linear sum of the Slater determinants and these expressions are useful for quantum
chemistry calculations. The variation procedure for solving Shrödinger equation is
extended to optimize the coefficients in the linear sum of the symplectic bases, the
parameters in the geminals, and the orbitals. For illustration, the LiH molecule, which
is taken as an example, is calculated by means of the AGP, the SPG, and the AGP-SPG
bases. In this paper, we also deal with the property of the symplectic bases in the dual
space.

2. On geminals

Let us consider a system of N electrons associated with 2M spin-orbitals to which
2M creators a+

i with i = 1, 2, . . . , 2M and 2M annihilators ai with i = 1, 2, . . . , 2M
correspond. Furthermore, let us relabel these operators in the form

a+
i , a+

ı , i = 1, 2, . . . ,M ,
ai, aı, i = 1, 2, . . . ,M ,

(1)

where ı is used to denote 2M + 1− i, i.e., i = 2M + 1− i. In this paper a+
i , ai and

a+
ı , aı are assigned as spin up and spin down, respectively.

Under the similarity transformation

R = eX (2)

with

X =
M∑
i=1

λi
(
a+
i ai + a+

ı aı
)

(3)

the operators a+
i , a+

ı , ai, aı in equation (1) turn into the parameter-dependent form
by writing

a+
i (ξi) = ξ

1/2
i a+

i , a+
ı (ξi) = ξ

1/2
i a+

ı ,

ai(ξi) = ξ
−1/2
i ai, aı (ξi) = ξ

−1/2
i aı,

(4)

where the complex parameters ξi, i = 1, 2, . . . ,M , are defined as

ξi = e2λi . (5)

By means of the one-particle operators in equation (4), we can introduce, from group
theory, M independent geminals, Q and gi, i = 1, 2, . . . ,M − 1, together with their
associated operators, Q′,Q0 and g′, g0i, i = 1, 2, . . . ,M − 1, by writing

Q =
M∑
i=1

(−1)ia+
i (ξi)a

+
ı (ξi) =

M∑
i=1

(−1)iξia
+
i a

+
ı , (6)
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Q′ = −
M∑
i=1

(−1)iai(ξi)aı (ξi) = −
M∑
i=1

(−1)iξ−1
i aiaı, (7)

Q0 =
1
2

M∑
i=1

[
a+
i (ξi)ai(ξi)− aı (ξi)a

+
ı (ξi)

]
=

1
2

M∑
i=1

(a+
i ai − aı a+

ı ), (8)

gi =
( M − i
M − i+ 1

)1/2
[

(−1)ia+
i (ξi)a

+
ı (ξi)−

1
M − i

M∑
j=i+1

(−1)ja+
j (ξj)a

+
j

(ξj)

]

=
( M − i
M − i+ 1

)1/2
[

(−1)iξia
+
i a

+
ı −

1
M − i

M∑
j=i+1

(−1)jξja
+
j a

+

j

]
, (9)

g′i =
( M − i
M − i+ 1

)1/2
[

(−1)iai(ξi)aı (ξi)−
1

M − i

M∑
j=i+1

(−1)jaj(ξj)aj (ξj)

]

=
( M − i
M − i+ 1

)1/2
[

(−1)iξ−1
i aiaı −

1
M − i

M∑
j=i+1

(−1)jξ−1
j aja

]
, (10)

g0i =
( M − i

2(M − i+ 1)

)1/2
[

(aıa
+
ı − a

+
i ai)−

1
M − i

M∑
j=i+1

(aa
+
j
− a+

j aj)

]
, (11)

where ξi, i = 1, 2, . . . ,M , are referred to as geminal parameters, and the quantity∑M
i=1 ξiξ

∗
i , which is an arbitray real number, is assigned in this paper as unit without

loss generality, i.e.,
∑M

i=1 ξiξ
∗
i = 1. Furthermore, it is not difficult to find that the

operators Q,Q′,Q0 and gi, g′i, g0i satisfy the commutation relations by writing

[Q,Q′] = 2Q0, [Q0,Q] = Q, [Q0,Q′] = −Q′, (12)

[Q, gi] = 0, [Q0, gi] = gi, [Q′, gi] =
√

2gi0, (13)

[Q, gi0] =
√

2gi, [Q0, gi0] = 0, [Q′, gi0] =
√

2g′i, (14)

[Q, g′i] =
√

2gi0, [Q0, g′1] = −g′i, [Q′, g′i] = 0. (15)

The commutation relations in equation (12) show that, Q,Q′,Q0 act as generators to
produce SU (2) group, and the commutation relations in equations (13)–(15) show that
gi, gi0, g′i satisfy the irreducible tensor commutation relations of the SU (2) group with
respect to j = 1, m = 1, 0,−1, i.e.,[

J±,T jm
]

=
√
j(j + 1)−m(m± 1)T jm±1,

[
Jz ,T

j
m

]
= mT jm.
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3. The symplectic bases set

In this section, let us give a brief disscussion on the construction of
(2M
N

)
com-

plete antisymmetrized bases set with N electrons which are built up by means of the
geminals Q, gi, i = 1, 2, . . . ,M−1, and the operators a+

i (ξi), a
+
ı (ξi), i = 1, 2, . . . ,M .

We shall see that the symmetry of symplectic group Sp(2M ) will be involved in the
construction.

Taking into consideration of the one-particle operators a+
i (ξi), a

+
ı (ξi), the

M (2M + 1) generators of symplectic group Sp(2M ) can be expressed as

Eij = a+
i (ξi)aj(ξj)− (−1)i+ja+

 (ξj)aı (ξi), i, j = 1, 2, . . . ,M , (16)

Ei = a+
i (ξi)aj(ξj)− (−1)i+a+

j (ξj)aı (ξi), i > j, i, j = 1, 2, . . . ,M , (17)

Eıj = a+
ı (ξi)aj(ξj)− (−1)ı+ja+

 (ξj)ai(ξi), i > j, i, j = 1, 2, . . . ,M. (18)

Notice that when we take i = j in Eij in equation (16), we have

Eii = a+
i ai − a+

ı aı, i = 1, 2, . . . ,M. (19)

These M operators are referred to as the generators of the Cartan subalgebra of
Sp(2M ). Furthermore, the Casimir operator C of Sp(2M ) is expressible in terms
of the operators in equations (16)–(18),

C =
1
4

M∑
i,j=1

(
EijEji +

1
2
EiEi +

1
2
EıjEjı

)
. (20)

It is known, from group theory, that for a system with N -electron, the representation
[1N ] of unitray group U (2M ) can be decomposed into the representations {〈1V 〉} of
Sp(2M ) in the form [

1N
]

=
∑
V

〈1V 〉, (21)

with

dim
[
1N
]

=
( 2M
N

)
=
∑
V

dim 〈1V 〉 (22)

and

dim
〈
1V
〉

=
( 2M
V

)
−
( 2M
V − 2

)
, (23)

where dim [1N ] and dim 〈1V 〉 are used to denote the dimensions of the representa-
tions [1N ] and 〈1V 〉, respectively. In the summations in equations (21) and (22), the
symplectic number V of 〈1V 〉 takes the values for N 6M ,

V =

{
0, 2, 4, . . . ,N , for even N ,
1, 3, 5, . . . ,N , for odd N ,

(24)
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for M 6 N 6 2M ,

V =

{
0, 2, 4, . . . , 2M −N , for even N ,
1, 3, 5, . . . , 2M −N , for odd N .

(25)

The decomposition rule from U (2M ) to Sp(2M ) in equation (21), shows that the
(2M
N

)
complete antisymmetrized bases set of the representation [1N ] can be constructed as
the irreducible bases {|N〈1V 〉(α1,α2, . . . ,αM )〉} of the representation of 〈1V 〉 with the
weight (α1,α2, . . . ,αM ). And these irreducible bases are the simultaneous eigenstates
of the Casimir operator C in equation (20) and the operators {Eii} of Cartan subalgebra
in equation (19), i.e.,

C
∣∣N〈1V 〉(α1,α2, . . . ,αM )

〉
=

[
M

2

(
M

2
+ 1

)
− M − V

2

(
M − V

2
+ 1

)]
×
∣∣N〈1V 〉(α1,α2, . . . ,αM )

〉
, (26)

Eii
∣∣N〈1V 〉(α1,α2, . . . ,αM )

〉
= αi

∣∣N〈1V 〉(α1,α2, . . . ,αM )
〉
. (27)

Notice that the ith component αi of the weight (α1,α2, . . . ,αM ) is the eigenvalue of
the operator Eii, and it takes the values 1, 0,−1. Furthermore, the operators a+

i (ξi)
and a+

ı (ξi) in equation (4) satisfy the commutation relations[
Eii, a

+
j (ξj)

]
= δija

+
j (ξj), (28)[

Eii, a
+
 (ξj)

]
= −δija+

 (ξj). (29)

These relations indicate that a+
i (ξi) is characterized by the ith component αi = 1

of the weight (0 . . . 0 1
i

0 . . . 0), a+
ı (ξi) by the ith component αi = −1 of the weight

(0 . . . 0− 1
i

0 . . . 0). Thus a+
i (ξi) and a+

ı (ξi) can be rewritten as

a+
i(αi)

(ξi) =

{
a+
i (ξi), for αi = 1,
a+
ı (ξi), for αi = −1.

(30)

Notice that αi = 1 and αi = −1 are associated with spin up and spin down, respec-
tively.

Since [
Eii, a

+
j (ξj)a

+
 (ξj)

]
= 0, (31)

the geminals Q and gi, i = 1, 2, . . . ,M − 1, satisfy the commutation relations

[Eii,Q] = 0, (32)

[Eii, gj] = 0. (33)

These relations show that the geminals Q and gi (i = 1, 2, . . . ,M−1) are characterized
by the weight (0 . . . 0).
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Since some weights of the representation 〈1V 〉 are degenerate, the group-
theoretical symbol 〈1V 〉 (α1,α2, . . . ,αM ) can not provide a complete classification
of the bases {|N〈1V 〉 (α1,α2, . . . ,αM )〉} in equations (26) and (27) with dim 〈1V 〉
given by equation (23). In order to give a complete classification of the bases, the
irreducible representations 〈1V1〉, 〈1V2〉, . . . , 〈1VM 〉 of a symplectic group chain

Sp(2M ) ⊃Sp(2M − 2) ⊃ · · · ⊃ Sp(2)
〈1V1〉 〈1V2〉 · · · 〈1VM 〉 (34)

are introduced instead of 〈1V 〉 to extend |N〈1V 〉 (α1,α2, . . . ,αM )〉 to the form
|N〈1V1〉〈1V2〉 · · · 〈1VM 〉(α1,α2, . . . ,αM )〉. For the group chain (34), the weight
(α1,α2, . . . ,αM ) of representation 〈1V1〉 can be interpreted in an alternative mean-
ing, i.e., the first component α1 which keeps its original meaning is referred
to as the first component of the weight (α1,α2, . . . ,αM ) of the representation
〈1V1〉 for group Sp(2M ), the second component α2 as the first component of the
weight (α2,α3, . . . ,αM ) of the representation 〈1V2〉 for group Sp(2M − 2), . . .,
the ith component αi as the first component of the weight (αi,αi+1, . . . ,αM ) of
the representation 〈1Vi〉 for group Sp(2M − 2i + 2), etc. Thus the basis set
|N〈1V1〉 〈1V2〉 · · · 〈1VM 〉 (α1,α2, . . . ,αM )〉 can be rewritten as∣∣N〈1V1〉(α1)〈1V2〉(α2) · · · 〈1VM 〉(αM )

〉
, (35)

where the symbol (α) attached to 〈1V 〉 as 〈1V 〉(α) denotes the first component of
the corresponding weight (α . . .) and α takes the values 1, 0,−1. Furthermore, the
symbol 〈1V 〉(α) means that the bases, which belong to the representation 〈1V 〉, can be
classified by means of 〈1V 〉(1), 〈1V 〉(0) and 〈1V 〉(−1) such that

〈1V 〉 =

 〈1
V 〉(1),
〈1V 〉(0),
〈1V 〉(−1)

(36)

with

dim 〈1V 〉 = dim 〈1V 〉(1) + dim 〈1V 〉(0) + dim 〈1V 〉(−1), (37)

where the dimensions dim 〈1V 〉(1), dim 〈1V 〉(0) and dim 〈1V 〉(−1) with respect to
〈1V 〉(1), 〈1V 〉(0) and 〈1V 〉(−1) are given by writing

dim 〈1V 〉(±1) =
V (M − V + 1)
M (2M − V + 1)

( 2M
V

)
, (38)

dim 〈1V 〉(0) =
2(M − V + 1)[M (2M + 1)− 2(M + 1)V + V 2]

(2M − V + 2)(2M − V + 1)

( 2M
V

)
. (39)

A complete group-theoretical classification of the basis set in equation (35) can be
illustrated by the modified branching rules

Sp(2M )−→Sp(2M − 2),
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〈1V1〉(±1)−→
(
1− δV1,0

)
〈1V1−1〉, (40)

〈1V1〉(0) −→
(
1− δV1,M

)
〈1V1〉+

(
1− δV1,1 − δV1,0

)
〈1V1−2〉. (41)

These branching rules, which play in this paper a crucial role, hold true for Sp(2M −
2i+ 2)→ Sp(2M − 2i) with i = 1, 2, . . . ,M − 1.

By the similar method in the earlier publication [20], the basis set in equa-
tion (35) can be constructed in terms of the geminals Q in equation (6) and gi with
i = 1, 2, . . . ,M − 1 in equation (9), and the 2M operators a+

i (ξi) and a+
ı (ξi) in

equation (4). The basis set{∣∣N〈1V1〉(α1) 〈1V2〉(α2) · · · 〈1VM 〉(αM )
〉}

takes the form∣∣N〈1V1〉(α1) 〈1V2〉(α2) · · · 〈1VM 〉(αM )
〉

= C(M ,N ,V1)Q(N−V1)/2
M∏
i=1

G(i,Vi,αi)a
+(i,Vi,αi)|0〉, (42)

where C(M ,N ,V1) is the normalization constant

C(M ,N ,V1) =

[(
M − V1 − N−V1

2

)
!

(M − V1)!
(
N−V1

2

)
!

]1/2

(43)

and where G(i,Vi,αi) and a+(i,Vi,αi) are defined as

a+(i,Vi,αi) =

{
1, for Vi 6= Vi+1 + 1, αi 6= ±1,
a+
i(αi)

(ξi), for Vi = Vi+1 + 1, αi = ±1, (44)

G(i,Vi,αi) =

{
1, for Vi 6= Vi+1 + 2, αi 6= 0,
G(i,Vi+1), for Vi = Vi+1 + 2, αi = 0.

(45)

In equation (45), G(i,Vi+1) is expressible as a linear sum of the geminals, Q and
gk (k = 1, 2, . . . , i), by writing

G(i,Vi+1) =Ai

{
1
M
Q−

i−1∑
k=1

[
(M − k + 1)(M − k)

]−1/2
gk +

(
M − i

M − i+ 1

)1/2

gi

}

−Bi(M − i)
{

1
M
Q−

i∑
k=1

[
(M − k − 1)(M − k)

]−1/2
gk

}
,

i = 1, 2, . . . ,M − 1, (46)

with

Ai =

[
M − i− Vi+1

M − i− Vi+1 + 1

]1/2

, (47)
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Bi =
[
(M − i− Vi+1)(M − i− Vi+1 + 1)

]−1/2
. (48)

The expression in equation (46) can be rewritten in the simple form

G(i,Vi+1) = Aib
+
i (ξi)−Bi

M∑
j=i+1

b+j (ξj) (49)

with

b+k (ξk) = (−1)kξkb
+
k , b+k = a+

k a
+

k
, k = 1, 2, . . . ,M. (50)

In equation (42), Q in equation (6) is referred to as the first kind geminal, and G(i,Vi+1)
in equation (49) with i = 1, 2, . . . ,M − 1 are referred to as the second kind geminal.
Notice that for a given basis |N〈1V1〉(α1) 〈1V2〉(α2) · · · 〈1VM 〉(αM ) the group symbol
〈1Vi〉(αi) i = 1, 2, . . . ,M arise from the branching rules in equations (40)–(41). Fur-
thermore, from the expression of the symplectic bases in equation (42), we can obtain
directly the following form∣∣〈1V1〉(αi) 〈1V2〉(α2) · · · 〈1VM 〉(αM )

〉
= C(M ,N ,V1)Q(N−V1)/2

(V1−X)/2∏
L=1

G(jL,VjL+1)
X∏
k=1

a+
ik(αik )(ξik )|0〉, (51)

where X is defined as

X =
M∑
i=1

|αi| (52)

and it takes the values as

X =

{
0, 2, 4, . . . ,V1, for even N ,
1, 3, 5, . . . ,V1, for odd N .

(53)

In equation (51), the fixed indices (j1, j2, . . . , j(V1−X)/2) and (i1, i2 . . . , iX) are subject
to the relations

j1 < j2 < · · · < j(V1−X)/2, j1, j2, . . . , j(V1−X)/2 = 1, 2, . . . ,M − 1, (54)

i1 < i2 < · · · < iX , i1, i2, . . . , iX = 1, 2, . . . ,M , (55)

(j1, j2, . . . , j(V1−X)/2) ∩ (i1, i2, . . . , ix) = ∅ (empty set). (56)

Since the first and the second kind geminals, Q and {G(i,Vi+1)} are characterized
by αi = 0 as shown in equations (32) and (33) and the one-particle operators
{a+
ik(αik )(ξik)} are characterized by αik = ±1 as shown in equation (30), the quantity

X in equation (52) is just the number of the one-particle operators. The expression
in equation (51) shows that for a given basis |N〈1V1〉(α1) 〈1V2〉(α2) · · · 〈1VM 〉(αM )〉, it
possesses (N − V1)/2 the first kind geminal Q, (V1 −X)/2 the second kind geminal
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{G(i,Vi+1)} and X the one-particle operators {a+
ik(αik )(ξik )}. For brevity, we only

state without proof that, the total number of the second kind geminal {G(i,Vi+1)}
which appears in

(2M
N

)
bases set, is [(N − 1)(2M − N − 1) + 1]/2 for even N or

(N − 1)(2M − N − 1)/2 for odd N . Notice that in the first and the second kind
geminals, there are only M independent ones.

For illustration of the basis set in equation (42), we take Sp(8) with M = 4
and N = 4 in which there are

(8
4

)
= 70 bases as an example. In this example, we

shall further discuss the types of the symplectic bases such as AGP, SPG, AGP-SPG,
GAGP, GSPG, SD and G(AGP-SPG).

3.1. AGP (Antisymmetrized Geminal Power)

There is only one AGP basis with V1 = 0 and X = 0 in the form∣∣4〈0〉(0) 〈0〉(0) 〈0〉(0) 〈0〉(0)
〉

=
1√
4!
Q2|0〉.

In the general case of
(2M
N

)
with even N , there is only one AGP

∣∣N〈0〉(0) 〈0〉(0) · · · 〈0〉(0)
〉

=

((
M − N

2

)
!

M !
(
N
2

)
!

)1/2

QN/2|0〉, (57)

in which only the first kind geminal Q is involved, and for group Sp(2M ), the AGP
is characterized by V1 = 0 and X = 0. When N is odd, there is no AGP appearing
in the bases

(2M
N

)
.

3.2. SPG (Sequential Product of Geminals)

There are two SPG bases with V1 = N = 4 and X = 0 such that∣∣4〈14〉(0) 〈12〉(0) 〈0〉(0) 〈0〉(0)
〉

= G(1, 2)G(2, 0)|0〉,

∣∣4〈14〉(0) 〈12〉(0) 〈12〉(0) 〈0〉(0)
〉

= G(1, 2)G(3, 0)|0〉.

In the general case of
(2M
N

)
with even N and N 6M , there are(

M
N/2

)
−
(

M
N/2− 1

)
(58)

SPG bases in which only the second kind geminal is involved, and for group Sp(2M ),
the SPG bases are characterized by V1 = N and X = 0. When N in equation (58) is
replaced by 2M − N , equation (58) still holds true for the case of M 6 N 6 2M .
When N is odd, there is no SPG appearing in the bases

(2M
N

)
.
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3.3. AGP-SPG

There are three AGP-SPG bases with V1 = 2 and X = 0 such that∣∣4〈12〉(0) 〈0〉(0) 〈0〉(0) 〈0〉(0)
〉

=
1√
2
QG(1, 0)|0〉,

∣∣4〈12〉(0) 〈12〉(0) 〈0〉(0) 〈0〉(0)
〉

=
1√
2
QG(2, 0)|0〉,

∣∣4〈12〉(0) 〈12〉(0) 〈12〉(0) 〈0〉(0)
〉

=
1√
2
QG(3, 0)|0〉.

In the general case of
(2M
N

)
with even N and N 6M , there are

N−2∑
V1=2,4,...

(
M
V1/2

)
−
(

M
V1/2− 1

)
(59)

AGP-SPG bases in which both the first and the second kind geminals are involved, and
for group Sp(2M ), the AGP-SPG bases are characterized by V1 = 2, 4, . . . ,N −2 and
by X = 0. When N−2 in the summation in equation (59) is replaced by 2M−N−2,
equation (59) still holds true for the case of M 6 N 6 2M . When N is odd, there is
no AGP-SPG appearing in the bases

(2M
N

)
.

3.4. GAGP (Generalized Antisymmetrized Geminal Power)

There are 24 GAGP bases with V1 = 2 and X = 2 such that∣∣4〈12〉(±1) 〈1〉(±1) 〈0〉(0) 〈0〉(0)
〉

=
1√
2
Qa+

1(±1)(ξ1)a+
2(±1)(ξ2)|0〉,

∣∣4〈12〉(±1) 〈1〉(0) 〈1〉(±1) 〈0〉(0)
〉

=
1√
2
Qa+

1(±1)(ξ1)a+
3(±1)(ξ3)|0〉,

∣∣4〈12〉(±1) 〈1〉(0) 〈1〉(0) 〈1〉(±1)
〉

=
1√
2
Qa+

1(±1)(ξ1)a+
4(±1)(ξ4)|0〉,

∣∣4〈12〉(0) 〈12〉(±1) 〈1〉(±1) 〈0〉(0)
〉

=
1√
2
Qa+

2(±1)(ξ2)a+
3(±1)(ξ3)|0〉,

∣∣4〈12〉(0) 〈12〉(±1) 〈1〉(0) 〈1〉(±1)
〉

=
1√
2
Qa+

2(±1)(ξ2)a+
4(±1)(ξ4)|0〉,

∣∣4〈12〉(0) 〈12〉(0) 〈12〉(±1) 〈1〉(±1)
〉

=
1√
2
Qa+

3(±1)(ξ3)a+
4(±1)(ξ4)|0〉.
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In the general case of
(2M
N

)
with even or odd N and N 6M , there are

N−2∑
X=2,4,...
or 1,3,...

2X
(
M
X

)
(60)

GAGP bases in which the first kind geminal Q and the one-particle operators
{a+
i(αi)

(ξi)} are involved, and for group Sp(2M ), the GAGP bases are characterized by
V1 = X = 2, 4, . . . ,N − 2 for even N or 1, 3, . . . ,N − 2 for odd N . When N − 2 in
the summation in equation (60) is replaced by 2M −N − 2, equation (60) still holds
true for the case of M 6 N 6 2M .

3.5. GSPG (Generalized Sequential Product of Geminals)

There are 24 GSPG bases with V1 = 4 and X = 2 such that∣∣4〈14〉(0) 〈12〉(±1) 〈1〉(±1) 〈0〉(0)
〉

= G(1, 2)a+
2(±1)(ξ2)a+

3(±1)(ξ3)|0〉,∣∣4〈14〉(0) 〈12〉(±1) 〈1〉(0) 〈1〉(±1)
〉

= G(1, 2)a+
2(±1)(ξ2)a+

4(±1)(ξ4)|0〉,∣∣4〈14〉(0) 〈12〉(0) 〈12〉(±1) 〈1〉(±1)
〉

= G(1, 2)a+
3(±1)(ξ3)a+

4(±1)(ξ4)|0〉,∣∣4〈14〉(±1) 〈13〉(±1) 〈12〉(0) 〈0〉(0)
〉

= a+
1(±1)(ξ1)a+

2(±1)(ξ2)G(3, 0)|0〉,∣∣4〈14〉(±1) 〈13〉(0) 〈1〉(±1) 〈0〉(0)
〉

= a+
1(±1)(ξ1)G(2, 1)a+

3(±1)(ξ3)|0〉,∣∣4〈14〉(±1) 〈13〉(0) 〈1〉(0) 〈1〉(±1)
〉

= a+
1(±1)(ξ1)G(2, 1)a+

4(±1)(ξ4)|0〉.

In the general case of
(2M
N

)
with even or odd N and N 6M , there are

N−2∑
X=2,4,...
or 1,3,...

2X
(
M
X

)((
M −X

(N −X)/2

)
−
(

M −X
(N −X)/2 − 1

))
(61)

GSPG bases in which the second kind geminals {G(i,Vi+1)} and the one-particle
operators {a+

i(αi)
(ξi)} are involved, and for group Sp(2M ), the GSPG bases are char-

acterized by V1 = N , and X = 2, 4, . . . ,N −2 for even N or X = 1, 3, . . . ,N −2 for
odd N . When N − 2 in the summation in equation (61) is replaced by 2M −N − 2,
equation (61) still holds true for the case of M 6 N 6 2M .

3.6. SD (Slater Determinant)

There are 16 SD bases with V1 = X = 4 by writing∣∣4〈14〉(±1) 〈13〉(±1) 〈12〉(±1) 〈1〉(±1)
〉

= a+
1(±1)(ξ1)a+

2(±1)(ξ2)a+
3(±1)(ξ3)a+

4(±1)(ξ4)|0〉.
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In the general case of
(2M
N

)
with even or odd N and N 6M , there are

2N
(
M
N

)
(62)

SD bases in which only the one-particle operators {a+
i(αi)

(ξi)} are involved, and for
group Sp(2M ), the SD bases are characterized by V1 = X = N . When N in
equation (62) is replaced by 2M − N , equation (62) still holds true for the case of
M 6 N 6 2M .

3.7. G(AGP-SPG) (Generalized AGP-SPG)

For group Sp(8) with M = 4 and N = 4, there is no G(AGP-SPG) appearing in
the 70 bases. For this, we take Sp(12) with N = 6 as an example. In this example,
there are 180 G(AGP-SPG) bases with V1 = 4 and X = 2. For brevity, we only give
twelve of them as follows∣∣6〈14〉(±1) 〈13〉(±1) 〈12〉(0) 〈0〉(0) 〈0〉(0) 〈0〉(0)

〉
=

1√
2
Qa+

1(±1)(ξ1)a+
2(±1)(ξ2)G(3, 0)|0〉,

∣∣6〈14〉(0) 〈12〉(±1) 〈1〉(0) 〈1〉(±1) 〈0〉(0) 〈0〉(0)
〉

=
1√
2
QG(1, 0)a+

2(±1)(ξ2)a+
4(±1)(ξ4)|0〉,

∣∣6〈14〉(0) 〈14〉(0) 〈12〉(±1) 〈1〉(0) 〈1〉(0) 〈1〉(±1)
〉

=
1√
2
QG(2, 2)a+

3(±1)(ξ3)a+
6(±1)(ξ6)|0〉.

In the general case of
(2M
N

)
with even or odd N and N 6M , there are

N−2∑
V1=4,6,...
or 3,5,...

V1−2∑
X=2,4,...
or 1,3,...

2X
(
M
X

)((
M −X

(V1 −X)/2

)
−
(

M −X
(V1 −X)/2 − 1

))
(63)

G(AGP-SPG) bases in which the first and the second kind geminals, and the one-
particle operators are involved, and for group Sp(2M ), these bases are characterized
by V1 = 4, 6, . . . ,N − 2 and X = 2, 4, . . . ,V1− 2 for even N or V1 = 3, 5, . . . ,N − 2
and X = 1, 3, . . . ,V1−2 for odd N . When N−2 in the summation in equation (63) is
replaced by 2M −N −2, equation (63) still holds true for the case of M 6 N 6 2M .

The sum of all types of the symplectic bases is equal to
(2M
N

)
, i.e.,

( 2M
N

)
=

N (2M−N )∑
V1

V1∑
X

2X
(
M
X

)((
M −X

(V1 −X)/2

)
−
(

M −X
(V1 −X)/2 − 1

))
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=

N (2M−N )∑
V1

(( 2M
V1

)
−
( 2M
V1 − 2

))
, (64)

where V1 and X take the values given by equation (24) (equation (25)) and equa-
tion (53), respectively.

4. The symplectic bases in dual space

In this section, we shall discuss the relation between the adjoint bases
{(|N〈1V1〉(α1) 〈1V2〉(α2) · · · 〈1VM 〉(αM )〉)+} of the bases in equation (42) and the sym-
plectic bases in dual space.

By the similar group theoretical method as we have done in section 3, we
can construct

(2M
N

)
symplectic bases {〈(αM )〈1VM 〉 · · · (α2)〈1V2〉(α1)〈1V1〉N |} in the

dual space, which are orthogonal to the bases {|N〈1V1〉(α1) 〈1V2〉(α2) · · · 〈1VM 〉(αM )〉}
given by equation (42). By means of the M operators Q′ in equation (7) and
g′i, i = 1, 2, . . . ,M − 1, in equation (10), and 2M operators ai(ξi) and aı (ξi) in
equation (4), the bases in dual space can be written as〈

(αM )〈1VM 〉 · · · (α2)〈1V2〉(α1)〈1V1〉N
∣∣

= C(M ,N ,V1)〈0|Q′(N−V1)/2
M∏
i=1

G′(i,Vi,αi)a(i,Vi,αi), (65)

where the normalization constant C(M ,N ,V1) is given by equation (43), and

a(i,Vi,αi) =

{
1, for Vi 6= Vi+1 + 1, αi 6= ±1,
ai(αi)(ξi), for Vi = Vi+1 + 1, αi = ±1, (66)

G′(i,Vi,αi) =

{
1, for Vi 6= Vi+1 + 2, αi 6= 0,
G′(i,Vi+1), for Vi = Vi+1 + 2, αi = 0.

(67)

In equation (67), G′(i,Vi+1) is expressible as a linear sum of the operators Q′ and
g′k (k = 1, 2, . . . , i) by writing

G′(i,Vi+1) =Ai

{
1
M
Q′ +

i−1∑
k=1

[
(M − k)(M − k + 1)

]−1/2
g′k −

(
M − i

M − i+ 1

)1/2

g′i

}

−Bi(M − i)
{

1
M
Q′ +

i∑
k=1

[
(M − k)(M − k + 1)

]−1/2
g′k

}
,

i = 1, 2, . . . ,M − 1. (68)
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This expression can be rewritten in the simple form

G′(i,Vi+1) = Aibi(ξi)−Bi
M∑

j=i+1

bj(ξj) (69)

with

bk(ξk) = (−1)kξ−1
k bk, bk = akak, k = 1, 2, . . . ,M , (70)

where Ai and Bi are given by equations (47) and (48), respectively.
Furthermore, from the expression of the symplectic bases in dual space in equa-

tion (65), we can obtain directly the following form〈
(αM )〈1VM 〉 · · · (α2)〈1V2〉(α1)〈1V1〉N

∣∣
= C(M ,N ,V1)〈0|Q′(N−V1)/2

(V1−X)/2∏
L=1

G′(jL,VjL+1)
X∏
k=1

aik(αik )(ξik ), (71)

where X is defined as in equation (52) and the values of X are given by equation (53).
Since ai(αi)(ξi) in equation (4) is not the adjoint operator of a+

i(αi)
(ξi) in equa-

tion (4), Q′ in equation (7) not the adjoint operator of Q in equation (6) and G′(i,Vi+1)
in equation (69) not the adjoint operator of G(i,Vi+1) in equation (49), i.e.,(

a+
i(αi)

(ξi)
)+ 6= ai(αi)(ξi), Q+ 6= Q′,

(
G(i,Vi+1)

)+ 6= G′(i,Vi+1). (72)

It is obvious that 〈(αM ) 〈1VM 〉 · · · (α2)〈1V2〉 (α1)〈1V1〉N | in dual space is not the adjoint
basis of |N〈1V1〉(α1) 〈1V2〉(α2) · · · 〈1VM 〉(αM )〉, i.e.,(∣∣N〈1V1〉(α1) 〈1V2〉(α2) · · · 〈1VM 〉(αM )

〉)+
6= 〈(αM ) 〈1VM 〉 · · · (α2)〈1V2〉(α1)〈1V1〉N |. (73)

Only under the extreme case where ξi = 1, i = 1, 2, . . . ,M , we have(∣∣N〈1V1〉(α1) 〈1V2〉(α2) · · · 〈1VM 〉(αM )
〉)+

= 〈(αM ) 〈1VM 〉 · · · (α2)〈1V2〉(α1)〈1V1〉N |. (74)

Now let us the symbol 〈[(αM ) 〈1VM 〉 · · · (α2)〈1V2〉(α1)〈1V1〉N ]| to denote the
adjoint basis (|N〈1V1〉(α1) 〈1V2〉(α2) · · · 〈1VM 〉(αM )〉

)+
, i.e.,〈[

(αM ) 〈1VM 〉 · · · (α2)〈1V2〉(α1)〈1V1〉N
]∣∣

=
(∣∣N〈1V1〉(α1) 〈1V2〉(α2) · · · 〈1VM 〉(αM )

〉)+
. (75)

From equations (51) and (75), we can obtain immediately the adjoint basis in the form〈[
(αM ) 〈1VM 〉 · · · (α2)〈1V2〉(α1)〈1V1〉N

]∣∣
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= C(M ,N ,V1)〈0|(Q+)(N−V1)/2
(V1−X)/2∏
L=1

(
G(jL,VjL+1)

)+ X∏
k=1

(
a+
ik(αik )(ξik)

)+
(76)

with

Q+ =
M∑
i=1

(−1)iξ∗i bi,
(
a+
ik(αik )(ξik)

)+
= (ξ∗ik)1/2aik(αik ), (77)

(
G(jL,VjL+1)

)+
= AjL(−1)jLξ∗jLbjL −BjL

M∑
k=jL+1

(−1)kξ∗kbk, (78)

where Q+ and (G(jL,VjL+1))+ are the adjoint of the geminals Q and G(jL,VjL+1),
respectively, and (a+

ik(αik )(ξik ))+ is the adjoint of the operator a+
ik(αik )(ξik). It should be

noted that in the adjoint basis in equation (76), there are (N−V1)/2 the first kind adjoint
geminal, (V1 −X)/2 the second kind adjoint geminal, and X the adjoint one-particle
operators. It is obvious that the equations (57)–(63) for the classification of AGP, SPG,
AGP-SPG, GAGP, GSPG, SD and G(AGP-SPG) hold true for the adjoint bases in
equation (76). Furthermore, the adjoint basis 〈[(αM ) 〈1VM 〉 · · · (α2) 〈1V2〉(α1) 〈1V1〉N ]|
can be expanded as a linear sum of the symplectic bases given by equation (65) in the
dual space in the form〈[

(αM )〈1VM 〉 · · · (α2)〈1V2〉(α1)〈1V1〉N
]∣∣

=
∑

{V ′i ,α′i}

(〈[
(αM )〈1VM 〉 · · · (α2)〈1V2〉(α1)〈1V1〉N

]∣∣
N〈1V ′1 〉(α′1)〈1V ′2 〉(α′2) · · · 〈1V ′M 〉(α′M )

〉)
×
〈
(α′M )〈1V ′M 〉 · · · (α′2)〈1V ′2 〉(α′1)〈1V ′1 〉N

∣∣, (79)

where〈[
(αM )〈1VM 〉 · · · (α2)〈1V2〉(α1)〈1V1〉N

]∣∣N〈1V ′1 〉(α′1)〈1V ′2 〉(α′2) · · · 〈1V ′M 〉(α′M )
〉

is the expansion coefficient, and it can be evaluated by means of equations (51) and
(76).

For illustrations, we take two bases for Sp(8) with N = 4 as examples.〈[
(0)〈0〉(0)〈12〉(1)〈13〉(1)〈14〉4

]∣∣
=

1
2

(ξ1ξ
∗
1 )1/2(ξ2ξ

∗
2 )1/2

[
(ξ3ξ

∗
3 + ξ4ξ

∗
4 )〈(0)〈0〉(0)〈12〉(1)〈13〉(1)〈14〉4

∣∣
+ (ξ3ξ

∗
3 − ξ4ξ

∗
4 )〈(0)〈0〉(0)〈0〉(1)〈1〉(1)〈12 〉4

∣∣],
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(0)〈0〉(0)〈0〉(1)〈1〉(1)〈12〉4

]∣∣
=

1
2

(ξ1ξ
∗
1 )1/2(ξ2ξ

∗
2 )1/2

[
(ξ3ξ

∗
3 − ξ4ξ

∗
4 )〈(0)〈0〉(0)〈12〉(1)〈13〉(1)〈14〉4

∣∣
+ (ξ3ξ

∗
3 + ξ4ξ

∗
4 )〈(0)〈0〉(0)〈0〉(1)〈1〉(1)〈12〉4

∣∣].
From equation (79), the matrix element of the Hamiltonian H for a system with N
electrons can be expressed as〈[

(αM )〈1VM 〉 · · · (α1)〈1V1〉N
]∣∣H∣∣N〈1V ′1 〉(α′1) · · · 〈1V ′M 〉(α′M )

〉
=

∑
{V ′′i ,α′′i }

〈[
(αM )〈1VM 〉 · · · (α1)〈1V1〉N

]∣∣N〈1V ′′1 〉(α′′1 ) · · · 〈1V ′′M 〉(α′′M )
〉

〈
(α′′M )〈1V ′′M 〉 · · · (α′′1 )〈1V ′′1 〉N

∣∣H∣∣N〈1V ′1 〉(α′1) · · · 〈1V ′M 〉(α′M )
〉
, (80)

where the matrix element〈
(α′′M )〈1V ′′M 〉 · · · (α′′1 )〈1V ′′1 〉N

∣∣H∣∣N〈1V ′1 〉(α′1) · · · 〈1V ′M 〉(α′M )
〉

(81)

can be evaluated by means of the irreducible tensor method. In this paper, we shall
not go further into this method.

Similarly, the adjoint of the basis in dual space can be expressed in terms of the
symplectic bases in equation (42), i.e.,∣∣[N〈1V1〉(α1) 〈1V2〉(α2) · · · 〈1VM 〉(αM )

]〉
=
(〈

(αM ) 〈1VM 〉 · · · (α2)〈1V2〉(α1)〈1V1〉N
∣∣)+

=
∑

{V ′i ,α′i}

∣∣N〈1V ′1 〉(α′1)〈1V ′2 〉(α′2) · · · 〈1V ′M 〉(α′M )
〉

×
(〈

(α′M )〈1V ′M 〉 · · · (α′2)〈1V ′2 〉(α′1)〈1V ′1 〉N
∣∣

[
N〈1V1〉(α1)〈1V2〉(α2) · · · 〈1VM 〉(αM )

]〉)
. (82)

5. The symplectic bases and determinant bases

In this section, we shall discuss the expansion of the symplectic bases as a linear
sum of the Slater determinants, and this expansion expression is useful in making use
of the quantum chemistry programs for practical calculations.

From the expression of the symplectic bases in equation (51), it is not diffi-
cult to find that the symplectic bases can be expressed as a linear sum of the de-
terminants b+m1

· · · b+mna
+
i1(αi1 ) · · · a

+
iX (αiX )|0〉 with n = (N − X)/2, where the oper-
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ators b+m1
· · · b+mn arise from the expansion of the first and the second kind gemi-

nals, Q and {G(jL,VjL+1)}, and where the one-particle operators a+
i1(αi1 ) · · · a

+
iX (αiX )

keep the same order of a+
i1(αi1 )(ξi1) · · · a+

iX (αiX )(ξiX ) appearing in equation (51) with

a+
ik(αik )(ξik) = ξ

1/2
ik
a+
ik(αik ), k = 1, 2, . . . ,X. From equation (51), we can obtain, by

induction,∣∣N〈1V1〉(α1) 〈1V2〉(α2) · · · 〈1VM 〉(αM )
〉

= C(M ,N ,V1)Qn−y
y∏

L=1

G(jL,VjL+1)
X∏
k=1

a+
ik(αik )(ξik)|0〉

= C(M ,N ,V1)
∑

m1,m2,...,mn

Dm1m2...mni1i2...iXEm1m2...mnj1j2...jy

× b+m1
b+m2
· · · b+mna

+
i1(αi1 )a

+
i2(αi2 ) . . . a

+
iX (αiX )|0〉, (83)

where n = (N −X)/2, y = (V1−X)/2, n− y = (N −V1)/2, and Dm1m2...mn i1i2...iX
is expressible in terms of the geminal parameters

Dm1m2...mn i1i2...iX = (−1)m1+m2+···+mnξm1ξm2 · · · ξmnξ
1/2
i1
ξ

1/2
i2
· · · ξ1/2

iX
, (84)

and where Em1m2...mn j1j2...jX , which arises from the expansion of the first and the
second kind geminals, takes the form

Em1m2...mn j1j2...jX =
∑
P⊂Sn

P (m1,m2, . . . ,mn)
(
Aj1δj1,m1 + ∆(m1 − j1)Bj1

)
×
(
Aj2δj2,m2 + ∆(m2 − j2)Bj2

)
· · ·
(
Ajyδjy ,my + ∆(my − jy)Bjy

)
(85)

with

∆(mi, ji) =

{
1, mi > ji,
0, mi 6 ji,

(86)

in which {P (m1,m2, . . . ,mn)} are used to denote the elements of the permutation
group Sn and they permute the indices (m1,m2, . . . ,mn) in equation (83). Notice that
for a given basis |N〈1V1〉(α1) 〈1V2〉(α2) · · · 〈1VM 〉(αM )〉 in equation (42) the indices
(j1, j2, . . . , jy) and (i1, i2, . . . , iX ) are fixed, and they satisfy the same relations given by
equations (54)–(56). The indices (m1,m2, . . . ,mn) in the summation in equation (83)
take the values in the range

m1,m2, . . . ,mn = 1, 2, . . . ,M , 1 6 m1 < m2 < · · · < mn 6M. (87)

Furthermore, the running indices (m1,m2, . . . ,mn) and the fixed indices (j1, j2, . . . , jy)
and (i1, i2, . . . , iX ) are subjected to the relations

mz+1 > j1, mz+2 > j2, . . . , mn > jy , z = (N − V1)/2, (88)
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(m1,m2, . . . ,mn) ∩ (i1, i2, . . . , iX ) = ∅ (empty set). (89)

From equations (76) and (83), it is easy to express〈[
(αM )〈1VM 〉 · · · (α2)〈1V2〉(α1)〈1V1〉N

]∣∣
in the form〈[

(αM )〈1VM 〉 · · · (α2)〈1V2〉(α1)〈1V1〉N
]∣∣

= C(M ,N ,V1)〈0|(Q+)n−y
y∏

L=1

(G(jL,VjL+1))+
X∏
k=1

(a+
ik(αik )(ξik))+

= C(M ,N ,V1)〈0|
∑

m1,m2,...,mn

D∗m1m2...mn i1i2...iXEm1m2...mn j1j2...jy

× bmn · · · bm2bm1aiX (αiX ) · · · ai2(αi2 )ai1(αi1 ), (90)

where

D∗m1m2...mn i1i2...iX = (−1)m1+m2+···+mnξ∗m1
ξ∗m2
· · · ξ∗mnξ

∗ 1/2
i1

ξ
∗ 1/2
i2
· · · ξ∗ 1/2

iX
. (91)

Notice that Q+, (a+
ik(αık )(ξik))+ and (G(jL,VjL+1))+ in equation (90) are given by

equations (77) and (78).
For illustration, AGP and GSPG for Sp(8) with M = 4 and N = 4 are taken as

examples.
For AGP, we have∣∣4〈0〉(0)〈0〉(0)〈0〉(0)〈0〉(0)

〉
=

1√
4!
Q2|0〉

=
1√
24

(
− ξ1ξ2b

+
1 b

+
2 + ξ1ξ3b

+
1 b

+
3 − ξ1ξ4b

+
1 b

+
4 − ξ2ξ3b

+
2 b

+
3

+ ξ2ξ4b
+
2 b

+
4 − ξ3ξ4b

+
3 b

+
4

)
|0〉,

〈[
(0)〈0〉(0)〈0〉(0)〈0〉(0)〈0〉4

]∣∣ =
1√
4!
〈0|(Q+)2

=
1√
24
〈0|
(
− ξ∗1ξ∗2b2b1 + ξ∗1ξ

∗
3b3b1 − ξ∗1ξ∗4b4b1 − ξ∗2ξ∗3b3b2

+ ξ∗2ξ
∗
4b4b2 − ξ∗3ξ∗4b4b3

)
.

This AGP possesses double and quadruple excitations.
For GSPG, we have∣∣4〈14〉(1)〈13〉(0)〈1〉(1)〈0〉(0)

〉
= G(2, 1)a+

1 (ξ1)a+
3 (ξ3)|0〉

=
1√
2

(
ξ2ξ

1/2
1 ξ

1/2
3 b+2 a

+
1 a

+
3 − ξ4ξ

1/2
1 ξ

1/2
3 b+4 a

+
1 a

+
3

)
|0〉,
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(0)〈0〉(1)〈1〉(0)〈13〉(1)〈14〉4

]∣∣ = 〈0|(G(2, 1))+a3(ξ3)a1(ξ1)

=
1√
2
〈0|
(
ξ∗2ξ
∗ 1/2
1 ξ

∗ 1/2
3 b2a3a1 − ξ∗4ξ

∗ 1/2
1 ξ

∗ 1/2
3 b4a3a1

)
.

This GSPG possesses single and triple excitations.
Furthermore, for a given basis |N〈1V1〉(α1) 〈1V2〉(α2) · · · 〈1VM 〉(αM )〉, a quantity

R is defined as

R =
t∑
i=1

|αi|, t =

{
N/2, for even N ,
(N + 1)/2, for odd N .

(92)

When R is an even(odd) number for even N , the basis possesses even(odd)-fold
excitations, whereas when R is an even(odd) number for odd N , the basis possesses
odd(even)-fold excitations.

6. On the spin of the symplectic basis set

Since the spin s and its component ms either for the first or for the second
kind geminals are equal to zero, the total spin S and its component Ms for a given
basis |N〈1V1〉(α1) 〈1V2〉(α2) · · · 〈1VM 〉(αM )〉 are only determined by the one-particle
operators a+

i1(αi1 )a
+
i2(αi2 ) · · · a

+
iX (αiX ), and it is obvious, from α = 1 and α = −1 which

correspond to spin up and spin down, that

Ms =
1
2

X∑
k=1

αik =
1
2

M∑
i=1

αi. (93)

In the second expression, we have made use of that there are, except (αi1 ,αi2 , . . . ,αiX ),
M −X components of the weight (α1,α2, . . . ,αM ) equal to zero.

By means of the symplectic bases {|N〈1V1〉(α1) 〈1V2〉(α2) · · · 〈1VM 〉(αM )〉} given
by equation (51) which possess the same part of

C(M ,N ,V1)Q(N−V1)/2
(V1−X)/2∏
L=1

G(jL,VjL+1),

we can make use of the parts

X∏
k=1

a+
ik(αik ),

in which the components (αi1 ,αi2 , . . . ,αiX ) take the values in the range (±1,±1, . . . ,
±1), to construct the bases with definite total spin S together with Ms = S,
S−1, . . . ,−S. Alternatively, when we choose the symplectic bases {|N〈1V1〉(α1)
〈1V2〉(α2) · · · 〈1VM 〉(αM )〉} in which the symplectic numbers (V1,V2, . . . ,VM ) are
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fixed and the X non-zero components of the weight (α1,α2, . . . ,αM ) take the val-
ues 1 or −1, we can construct the bases with definite total spin S together with
M = S,S−1, . . . ,−S.

For illustration, the four GSPG of Sp(8) with M = 4 and N = 4∣∣4〈14〉(0)〈12〉(±1)〈1〉(±1)〈0〉(0)
〉

= G(1, 2)a+
2(±1)(ξ2)a+

3(±1)(ξ3)|0〉
are taken as an example such that∣∣ψ (S = 0,MS = 0)

〉
=

1√
2

(∣∣4〈14〉(0) 〈12〉(1) 〈1〉(−1) 〈0〉(0)
〉
−
∣∣4〈14〉(0) 〈12〉(−1) 〈1〉(1) 〈0〉(0)

〉)
=

1√
2
G(1, 2)

(
a+

2 (ξ2)a+

3
(ξ3)− a+

2
(ξ2)a+

3 (ξ3)
)
|0〉,

∣∣ψ (S = 1,MS = 1)
〉

=
∣∣4〈14〉(0) 〈12〉(1) 〈1〉(1) 〈0〉(0)

〉
=G(1, 2)a+

2 (ξ2)a+
3 (ξ3)|0〉,∣∣ψ (S = 1,MS = 0)

〉
=

1√
2

(∣∣4〈14〉(0) 〈12〉(1) 〈1〉(−1) 〈0〉(0)
〉

+
∣∣4〈14〉(0) 〈12〉(−1) 〈1〉(1) 〈0〉(0)

〉)
=

1√
2
G(1, 2)

(
a+

2 (ξ2)a+

3
(ξ3) + a+

2
(ξ2)a+

3 (ξ3)
)
|0〉,

∣∣ψ (S = 1,MS = −1)
〉

=
∣∣4〈14〉(0) 〈12〉(−1) 〈1〉(−1) 〈0〉(0)

〉
=G(1, 2)a+

2
(ξ2)a+

3
(ξ3)|0〉.

7. On the optimization calculations of LiH molecule with respect to AGP, SPG
and AGP-SPG

For a system with N electrons, we choose 2M spin-orbitals which are taken
from the Hartree–Fock procedure as starting point, and also we choose appropriately
the state vector |ψ〉 as a linear sum of a number of symplectic bases, i.e.,

|ψ〉=
∑

{Vi,αi}

C
(
〈1V1〉(α1) 〈1V2〉(α2) · · · 〈1VM 〉(αM )

)
× |N〈1V1〉(α1) 〈1V2〉(α2) · · · 〈1VM 〉(αM ), (94)

in which the symplectic bases can be further expressed in terms of the Slater deter-
minants given by equation (83). The optimization procedure for solving Schrödinger
equation by variation method is extended to the coefficients{

C
(
〈1V1〉(α1) 〈1V2〉(α2) · · · 〈1VM 〉(αM )

)}
,
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the geminal coefficients {ξ1ξ2 · · · ξM} [6,13], and the orbitals {a+
1 |0〉, a

+
2 |0〉, . . . ,

a+
M |0〉} [26,27].

It is known that by means of AGP, LiH molecule was investigated by using
13-CGTO basis [21] and it was shown that the AGP basis led to the calculated energies
associated with high percentage of correlation energy. In this section, we only give a
brief discussion on the calculations of LiH molecule with respect to AGP, SPG and
AGP-SPG. The STO-6G molecular orbitals of Gaussian 94 program are taken as the
starting point, and the numerical values of the one-center and two-center integrals are
taken from the same program. In this paper, the choice of STO-6G basis set is not for
the accurate calculations, but rather for the exhibition of some important properties of
the symplectic bases.

From the expansion of the symplectic bases as a linear sum of Slater determinants
in equation (83), it is not difficult to find that the AGP, SPG and AGP-SPG bases are
expressible in terms of the same types of the Slater determinants, but with different
coefficients. Since the STO-6G is associated with Sp(12), we have

|AGP〉=
∣∣4〈0〉(0) 〈0〉(0) 〈0〉(0) 〈0〉(0) 〈0〉(0) 〈0〉(0)

〉
=

∑
16i<j66

Aija
+
i a

+
ı a

+
j a

+
 |0〉,

where

Aij = (−1)i+jξiξjaij (95)

with

a12 = a13 = a14 = a15 = a16 = a23 = a24 = a25 = a26

= a34 = a35 = a36 = a45 = a46 = a56 = 1√
15

,

|SPG〉=
∣∣4〈14〉(0) 〈12〉(0) 〈0〉(0) 〈0〉(0) 〈0〉(0) 〈0〉(0)

〉
=

∑
16i<j66

Bija
+
i a

+
ı a

+
j a

+
 |0〉,

where

Bij = (−1)i+jξiξjbij (96)

with

b12 =
√

3
5 , b13 = b14 = b15 = b16 = b23 = b24 = b25 = b26 = − 1

4

√
3
5 ,

b34 = b35 = b36 = b45 = b46 = b56 = 1
6

√
3
5 ,

∣∣(AGP− SPG)1
〉

=
∣∣4〈12〉(0) 〈0〉(0) 〈0〉(0) 〈0〉(0) 〈0〉(0) 〈0〉(0)

〉
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=
∑

16i<j66

Cija
+
i a

+
ı a

+
j a

+
 |0〉,

where

Cij = (−1)i+jξiξjcij (97)

with

c12 = c13 = c14 = c15 = c16 =
√

2
15 ,

c23 = c24 = c25 = c26 = c34 = c35 = c36 = c45 = c46 = c56 = −
√

1
30 ,

∣∣(AGP− SPG)2
〉

=
∣∣4〈12〉(0) 〈12〉(0) 〈0〉(0) 〈0〉(0) 〈0〉(0) 〈0〉(0)

〉
=

∑
16i<j66

Dija
+
i a

+
ı a

+
j a

+
 |0〉,

where

Dij = (−1)i+jξiξjdij (98)

with

d12 =
√

1
5 , d13 = d14 = d15 = d16 = − 1

4

√
1
5 ,

d23 = d24 = d25 = d26 = 3
4

√
1
5 , d34 = d35 = d36 = d45 = d46 = d56 = − 1

2

√
1
5 .

Since the AGP, SPG, (AGP-SPG)1 and (AGP-SPG)2 are expanded in terms of the same
types of the Slater determinants, these four symplectic bases lead, via the optimizations
of the orbitals and the geminal parameters {ξi}, to the same calculated energies

E(AGP) = E(SPG) = E
(
(AGP− SPG)1

)
= E

(
(AGP− SPG)2

)
. (99)

These calculated results are listed in table 1 with respect to different internuclear
distance. Notice that though the optimization results of the geminal parameters are
different with respect to AGP, SPG, (AGP-SPG)1 and (AGP-SPG)2 as shown in table 2,
the calculated coefficients Aij ,Bij ,Cij and Dij in equations (95)–(98) are nearly the
same as listed in table 3. The calculated results of the AGP, SPG, (AGP-SPG)1 and
(AGP-SPG)2 bases for LiH which possess the same high percentage of correlation
energy are omitted.

Furthermore, when the state is chosen as a linear sum of the AGP, SPG, (AGP-
SPG)1 and (AGP-SPG)2, i.e.,

|ψ〉 = C1|AGP〉+ C2|SPG〉+ C3|(AGP− SPG)1〉+ C4|(AGP− SPG)2〉, (100)

we obtain, via the optimizations of the orbitals, the geminal parameters {ξi} and the
coefficients {Ci}, the calculated energies for LiH molecule which are the same as those
calculated results by using AGP, SPG, (AGP-SPG)1 and (AGP-SPG)2 listed in table 1.
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Table 1
The calculated energies (a.u.) of LiH with respect to different internuclear distance R.

R(bohr) AGP SPG (AGP-SPG)1 (AGP-SPG)2 AGPa

2.000 –7.901277 –7.901277 –7.901277 –7.901278 –7.88039
3.015b –7.972140 –7.972140 –7.972140 –7.972141 –7.97516
4.000 –7.941202 –7.941203 –7.941202 –7.941203 –7.96379
6.000 –7.882247 –7.882248 –7.882247 –7.882248 –7.92596
8.000 –7.872031 –7.872031 –7.872031 –7.872031 –7.91108

10.00 –7.871054 –7.871054 –7.871054 –7.871054 –7.90895
20.00 –7.870964 –7.870964 –7.870964 –7.870964 –7.90859

a Due to Öhrn et al. [21], with basis (7s2p).
b R = 3.015 is the equilibrium internuclear distance of LiH.

Table 2
The optimized geminal parameters {|ξi|}a of AGP, SPG, (AGP-SPG)1 and (AGP-SPG)2 at R = 3.015

bohr.

|ξi| AGP SPG (AGP-SPG)1 (AGP-SPG)2

|ξ1| 9.9985 × 10−1 9.9980 × 10−1 9.9941 × 10−1 9.9998 × 10−1

|ξ2| 1.6925 × 10−2 1.6989 × 10−2 3.3875 × 10−2 5.6653 × 10−3

|ξ3| 6.8562 × 10−5 2.7616 × 10−4 1.3724 × 10−4 9.2094 × 10−5

|ξ4| 4.6218 × 10−4 1.8561 × 10−3 9.2502 × 10−4 6.1893 × 10−4

|ξ5| 4.6218 × 10−4 1.8561 × 10−3 9.2502 × 10−4 6.1893 × 10−4

|ξ6| 2.4665 × 10−3 9.9036 × 10−3 4.9365 × 10−3 3.3025 × 10−3

a |ξi| = (ξiξ∗i )1/2 is the modulus of the geminal coefficient ξi.

Table 3
The optimization coefficients Aij ,Bij ,Cij ,Dij for AGP, SPG, (AGP-SPG)1 and (AGP-SPG)2 at R =

3.015 bohr.

(i j)a Aij Bij Cij Dij

(1 2) 0.988815 0.988814 −0.988815 −0.988814
(1 3) −0.004006 −0.004018 0.004006 0.004018
(1 4) −0.027002 −0.027007 0.027002 0.027007
(1 5) −0.027002 −0.027007 0.027002 0.027007
(1 6) −0.144100 −0.144102 0.144099 0.144102
(2 3) −0.000068 −0.000068 0.000068 0.000068
(2 4) −0.000457 −0.000459 0.000458 0.000459
(2 5) −0.000457 −0.000459 0.000458 0.000459
(2 6) −0.002439 −0.002449 0.002442 0.002449
(3 4) 0.000002 0.000005 −0.000002 −0.000005
(3 5) 0.000002 0.000005 −0.000002 −0.000005
(3 6) 0.000010 0.000027 −0.000010 −0.000027
(4 5) 0.000012 0.000033 −0.000012 −0.000033
(4 6) 0.000067 0.000178 −0.000067 −0.000178
(5 6) 0.000067 0.000178 −0.000067 −0.000178

a The symbol (i, j) is used to denote the coefficients Aij , Bij , Cij and Dij in equations (95)–(98)
with respect to AGP, SPG, (AGP-SPG)1 and (AGP-SPG)2 bases.
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For brevity, the details are omitted here. When we consider more symplectic bases
in the linear sum in equation (42) in the calculation of LiH molecule with STO-6G,
we find that the contribution of AGP, SPG, (AGP-SPG)1 and (AGP-SPG)2 are not
the same, and the effect of the geminals with non-linear variation parameters reduce,
in comparison with the extreme symplectic bases (ξi = 1), a great number of the
symplectic bases (ξi 6= 1) in the variation procedure. These primary calculated results
need to be further verified by use of larger basis set than STO-6G, in this paper, we
do not go further into these details.
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[21] J. Vortiz, B. Weiner and Y. Öhrn, Int. J. Quantum Chem. Symp. 15 (1981) 113.
[22] B. Weiner and O. Goscinski, Phys. Rev. 22 (1980) 2374.
[23] B. Weiner and O. Goscinski, Phys. Rev. A27 (1983) 58.
[24] B. Weiner, H.J.Aa. Jensen and Y. Öhrn, J. Chem. Phys. 80 (1984) 2009.
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